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In a previous study on a physics dataset from the Andes tutor, we found that the simple location 
heuristic was better at making error attribution than the simple temporal heuristic when evaluated 
on the learning curve standard. In this study, we investigated the generality of performance of the 
simple location heuristic and the simple temporal heuristic in the math domain to see if previous 
results generalized to other Intelligent Tutoring System domains. In support of past results, we 
found that the simple location heuristic provided a better goodness of fit to the learning curve 
standard, that is, it was better at performing error attribution than the simple temporal heuristic. 
One observation is that for tutors where the knowledge components can be determined by the 

interface location in which an action appears, using the simple location heuristic is likely to show 
better results than the simple temporal heuristic. It is possible that the simple temporal heuristic is 
better in situations where the different problem subgoals can be associated with a single location.  
However, our prior results with a physics data set indicated that even in such situations the simple 
location heuristic may be better.  Further research should explore this issue. 
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1. INTRODUCTION  
Increasingly, learning curves have become a standard tool for evaluation of Intelligent 

Tutoring Systems (ITS) [Anderson, Bellezza & Boyle, 1993; Corbett, Anderson, & 

O’Brien, 1995; Koedinger & Mathan, 2004; Martin, Mitrovic, Mathan, & Koedinger, 

2005; Mathan & Koedinger, 2005; Mitrovic & Ohlsson, 1990] and measurement of 

students’ learning [Anderson, Bellezza & Boyle, 1993; Heathcote, Brown, & Mewhort, 

2002]. The slope of learning curves show the rate at which a student learns over time, and 

reveals how well the tutor’s cognitive model fits what the student is learning. However, 

these learning curves require a method for attributing error to the “knowledge 

components” (skills or concepts) in the student model that the student is missing. 

Knowledge components, concepts and skills will be used interchangeably in this paper. In 
a previous study using data from the Andes Intelligent tutor [VanLehn et al., 2005], four  
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alternative heuristics were evaluated - simple location heuristic (LH), simple temporal 

heuristic (TH), model-based location heuristic (MLH) and model-based temporal 

heuristic (MTH) [Nwaigwe et al., 2007]. When evaluated on the learning curve standard, 

the two location heuristics LH and MLH, outperformed the temporal heuristics, TH and 
MTH. However, the generality of performance of these heuristics in other ITS subject 

domains needs to be tested.  

In this study conducted in the mathematics domain, we investigated whether the 

previous performance of the LH and TH generalized to other ITS domains. We 

specifically asked if the LH was better than the TH at predicting student changes in error 

rate over time. We used log data from a Cognitive Tutor on a Scatterplot lesson and 

implemented the learning curves standard using the statistical component of Learning 

Factors Analysis [Cen, Koedinger & Junker, 2005; Pirolli & Wilson, 1998]. 

Our intuition is that the LH may be the better choice for error attribution when 

knowledge components (KCs) can be determined by the interface location where an 

action occurs. To justify this, imagine that a worker has homes, Ha and Hb in which to 
perform tasks A and B respectively. The worker goes to home Ha and attempts task A but 

fails. The worker abandons the failed task A and goes to home Hb, where he/she succeeds 

at task B. The assumption is that tasks A and B are associated with different KCs. The 

worker later returns to location Ha, and this time, is successful at task A. The LH will 

more rationally attribute the initial failed attempt at Ha to the KC associated with task A 

since its rule is to attribute error to the first successfully implemented KC at the initial 

error location. The TH will however, wrongfully put blame on the KC associated with 

task B since its method of error attribution is to blame the KC associated with the first 

correctly implemented task.  

Sometimes, TH might be a better choice for making error attribution. We believe this 

to be the case when it is necessary to perform a set of tasks in a prescribed sequence. To 

elaborate, imagine that homeschooler Bella is required to perform two tasks and in the 
given sequence – eat breakfast (EB), and do schoolwork (DS) and in any of two 

locations, L1 and L2 on the dining table of the family’s apartment. We again assume that 

tasks EB and DS are associated with different KCs. Bella decides that she did not like 

what Mom served for breakfast that morning and goes straight to her schoolwork, DS, at 

location L1, skipping task EB. However, Bella fails at task DS due to hunger associated 

distractions. Later, she abandons task DS and revisits and succeeds at task EB at location 

L2. Bella then goes back location to L1 and completes task DS. In attributing blame, TH 

will rationally blame the KC associated with task EB. However the LH will wrongfully 

blame the KC associated with task, DS. These examples imply that it may be better to 

apply heuristics in making error attribution. 

Although an immediate purpose for error attribution is to drive learning curve 
generation, the assignment of blame problem is more general and affects many aspects of 

student modeling. 

2. ERROR ATTRIBUTION HEURISTICS 
A basic assumption of many cognitive models is that knowledge can be decomposed into 

components, that each component is learned independently of the others and that 

implementation of a step in the solution of a problem is an attempt to apply one or more 

knowledge components (KCs).  When correct solution steps are generated, either by an 

expert system or a human expert, the step is often annotated with the KCs that must be 

applied in order to generate the step.  Thus, when a student enters that step, the system 

can infer that the student is probably (but not necessarily) applying those KCs.  



  
 

An ITS system can be designed to anticipate and generate some incorrect steps and 

associated goals, however, it is rare for expert systems or expert authors to anticipate and 
generate a large number of incorrect steps and corresponding goals. Hence, when the 

student enters an incorrect step, it is often not clear what KC(s) should have been applied, 

so the system cannot determine which KC(s) the student is weak on.  If the system simply 

ignores incorrect steps, then it only “sees” successful applications of KCs.  It cannot 

“see” failures of a KC.  It may see lots of incorrect steps, but it cannot determine and 

record what KC(s) to blame for each error [VanLehn et al, 2005] and so, learning curves 

cannot be generated. This suggests using heuristics. 

The tutoring system usually has two clues available: the location of the incorrect step 

on the user interface and the subsequent steps entered by the student.  For instance, if a 

student makes an error on a step at time 1 and at location A, the student will often attempt 

to correct it immediately, perhaps with help from the tutor.  So if the first correct step, at 

time 2 is also at location A, and say, that the step is annotated with KC x, then it is likely 
that the incorrect step at time 1 was a failed attempt to apply KC x.  This heuristic allows 

the system to attribute errors to KCs whenever the system sees a correct step immediately 

following the target incorrect step, and both steps are in the same location on the user 

interface. 

However, it is not clear how to generalize this heuristic.  What if the next correct step 

is not in the same location?  What if there are intervening incorrect steps in different 

locations?  In previous work using data from the Andes Physics Tutor, four automated 

heuristics for making error attribution (LH, TH, MLH, MTH) were proposed and 

evaluated guided by whether the heuristic was driven by location or by the temporal order 

of events [Nwaigwe et al, 2007].  

For every error transaction, LH attributes blame to the KC mapped to a subsequent 
correct entry at the widget location where the error occurred [Anderson, Bellezza & 

Boyle,1993; Koedinger & Mathan, 2004; Martin, Mitrovic, Mathan, & Koedinger, 2005] 

while the TH ascribes blame to the KC that labels the first correct entry in time. When 

there is no subsequent correct entry with a label of the error location, LH blames the KC 

with the first correct entry in time, that is, it implements the behavior of TH. When the 

tutor provides a choice of some KC to blame for an error, the MLH goes with the tutor’s 

choice otherwise, it simply implements the LH. For an error transaction, MTH also goes 

with the domain model’s choice if one exists, otherwise it implements the TH.  

In this work, we examine the performance of the LH and TH in the mathematics 

domain. Table I shows sample log transaction from the cognitive tutor for the scatterplot 

lesson. The table illustrates how the LH and the TH can help resolve the error attribution 

ambiguity. Columns in table 1 are described thus: “location” column indicates the place 
on the interface (the interface widget) in which the student made an input; “Outcome” 

indicates if an input is correct or not, while “Student Model KC” lists the system’s choice 

of KC which the student should implement. 

In row 1, the student makes an error at the location labeled, “var-0val-1”. The system 

however does not indicate the KC the student ought to be practicing. To resolve this 

ambiguity, the LH uses the KC that labels a subsequent correct entry in the same location 

– see row 5. That is, it chooses “choose variable”. On the other hand, the TH chooses the 

KC that labels the first correct entry in time, irrespective of interface location. Its choice 

is “label x-axis”. In row #2, the domain model blames the KC “choose variable” for the 

student’s error. LH chooses “choose variable” since it is the first correctly implemented 

KC at the location “var-0val-1”. TH blames the KC “label x-axis” in this case.  
In the prior study, the cognitive model generated by the LH was found to outperform 

that of the TH and also, the tutor’s original model according to the learning curve 



 

 
 

standard. In other words, the LH was better at making error attributions than the other 

two cognitive models. Compared to the TH, we also found that the error attribution 

method of the LH was more like that made by human coders. In this work, we conduct 

our analysis in the math domain and compare the performance of the LH to that of the 

TH based on the learning curve standard. Our goal is to see if the previous performance 
of the LH and TH can be generalized to other intelligent tutoring system domains. 

 

 

Table I.  Table illustrating different error attributions made by the 2 methods 

KC Error Attributions methods 
# Location Outcome 

Student Model
KC LH TH  

1 
var-0val-1 
 

incorrect 
  
  
 

choose variable label x-axis 

2 var-0val-1 incorrect choose variable choose variable label x-axis 

3 var-1val-1 correct label x-axis label x-axis label x-axis 

4 var-0val-1 incorrect   choose variable choose variable 

5 var-0val-1 correct choose variable choose variable choose variable 

 

 

3. LEARNING CURVES 
Learning curves plot the performance of students with respect to some measure of their 

ability over time [Anderson, Bellezza & Boyle, 1993; Corbett, Anderson, O’Brien, 1995; 
Koedinger & Mathan, 2004; Martin, Mitrovic, Mathan, & Koedinger, 2005; Mathan & 

Koedinger, 2005; Mitrovic & Ohlsson, 1990]. For ITSs, the standard approach is to 

measure the proportion of knowledge components in the domain model that have been 

“incorrectly” applied by the student. This is also known as the “error rate”. Other 

alternatives exist, such as the number of attempts taken to correct a particular type of 

error. Time is generally represented as the number of opportunities to practice a KC or 

skill. This in turn may be determined in different ways: for instance, it may represent 

each new step a student attempts that is relevant to the skill, on the basis that repeated 

attempts at the KC are benefiting from the student having been given feedback and as-

needed instruction about that particular skill and hence may improve from one attempt to 

the next. If the student is learning the KC or skill being measured, the learning curve will 

follow a so-called “power law of practice” [Mathan & Koedinger, 2005]. If such a curve 
exists, it presents evidence that the student is learning the skill being measured or 

conversely, that the skill represents what the student is learning.  

3.1. THE LEARNING CURVES STANDARD 
The power law applies to individual skills and does not take into account student effects. 

The statistical component of Learning Factors Analysis (LFA) extends the power law to a 

logistic regression model which accommodates student effects for a cognitive model 

incorporating multiple knowledge components and multiple students [Cen, Koedinger, & 

Junker, 2005], see equation 1. The following are the assumptions on which equation 1 is 

based: 

1. Different students may know more or less initially. An intercept parameter of 

this model reflects each student’s initial knowledge.  



  
 

2. Students learn at the same rate. Thus, slope parameters do not depend on the 

student. Slope parameters reflect the learning rate of each KC which the student 
model encompasses and are independent of student effect.  This assumption 

made so as to reduce the number of parameters in equation 1 and is further 

justified since equation 1 is focused on refining a cognitive model rather than on 

evaluating students’ knowledge growth [Draney, Pirolli & Wilson, 1995]. 

3. Some KCs are more likely known than others. An intercept parameter for each 

KC captures initial difficulty of the skill.  

4. Since some KCs are easier to learn than other, the model of equation 1 uses a 

slope parameter to reflect this for each skill. Larger values for initial difficulty 

reflect tougher skills.  

 

ln[p/(1-p)] = ! "i Xi + ! #jYj + ! $jYjTj . (1) 

 
where p – the probability of success at a step performed by student i that requires 

knowledge component j; Xi and Yj – the dummy variable vectors for students and 

knowledge components respectively; Tj – the number of practice opportunities student i 

has had on knowledge component j; !i – the coefficient that models student i’s initial 

knowledge; "j – the coefficient that reflects the initial difficulty of knowledge component 

j where larger values of initial difficulty reflect tougher skills; #j – the coefficient that 

reflects the learning rate of knowledge component j, given its practice opportunity. 

In this paper, the model of equation 1 is used to apply the learning curve standard.   

Bayesian Information Criterion (BIC) [Wasserman, 2004] is used to estimate prediction 

risk in the model while loglikelihood is used to measure model fit. Lower BIC scores, 

mean a better balance between model fit and complexity. 

4. DATA SOURCE 
The data used for this research was collected as part of a study conducted in a set of 5 

middle-school classrooms at 2 schools in the suburbs of a medium-sized city in the 

Northeastern United States. Student ages ranged approximately from 12 to 14 years. The 

classrooms studied were taking part in the development of a new 3-year cognitive tutor 

curriculum for middle school mathematics [Baker, 2005; Baker., Corbett, Koedinger & 

Wagner, 2004]. Data collected was from the study on these classrooms during the course 

of a short (2 class periods) cognitive tutor unit on scatterplot generation and 

interpretation. Scatterplots depict the relationship between two quantitative variables in a 

Cartesian plane, using a point to represent paired values of each variable. 

The scatterplot lesson consisted of a set of problems and for each problem, a student 

was given a data set to generate a graph. The student then had to choose from a list, the 
variables that were appropriate for use in the scatterplot (see figure 1); those that where 

quantitative or categorical; and subsequently whether a chosen variable was appropriate 

for a bar chart. 

Next the student was required to label the X and Y-axis (see figure 2), and to choose 

each axis bound and scale. The student was then required to plot points on the graph by 

clicking on the desired position on the graph. Finally, the student was required to answer 

a set of interpretation questions to reason about the graph’s trend, outliers, monotonicity, 

and extrapolation and in comparison with other graphs. In our dataset, students solved a 

maximum of six problems and a minimum of two in the scatterplot lesson. 

 

 
 



 

 
 

 
Figure 1 Scatterplot lesson interface for choosing variable type [Baker, 2005] 

 

 

 

 

 

 

 
 

Figure 2 Interface for graph creation in the scatterplot lesson [Baker, 2005] 

 

 

 



  
 

5. METHODOLOGY 
The algorithms for the LH and TH used in this research was implemented in pure java 1.6 
and designed to process student log data in MS Excel format. Both algorithms used 

sequential search. Log data from the cognitive tutor unit on scatterplot generation and 

interpretation served as input to the programs. The output from each program was the 

choice of KC codes made by the heuristic being implanted as explained in section 2.  

To analyze the cognitive model of each heuristic according to the learning curve 

standard, the data output from each program was then fit to equation 1 to derive learning 

behavior. The coefficients of equation 1, initial KC difficulty ("j), initial student difficulty 

(!i) and KC learning rate (#j) were used to describe learning behavior for each heuristic. If 

the intercept of a KC was higher, then, its initial difficulty was lower. Further, if the slope 

of each KC was higher, then, the faster students learned that skill. For the model of each 

heuristic, BIC score was used to estimate prediction risk while loglikelihood was used to 

measure model fit. 

6. RESULTS AND DISCUSSION 
Table II summarizes the results of the learning curve standard for the student models for 

both the LH and TH. The results show that the simple location heuristic, LH (BIC score: 

7,510.12) shows better fit to the learning curve standard compared to the simple temporal 

heuristic, TH (BIC scores: 7,703.58). This means that the model of the LH is more 

reliable and so, a prediction error is more likely to occur if one used the TH model. 

Loglikelihood score was also better for the LH (-3,370.37) than for the TH (-3,464.93), 

indicating that the LH model was a better fit to the data than the competing TH model. 

This shows how the different error attribution methods affect the result. 

 
 

Table II. Results of the Learning Curve Standard 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 TH LH 

logLikelihood -3,464.93 -3,370.37 
 

BIC 7,703.58 7,510.12 
 

Learning Rate (!j) Mean (Std) 0.09 (0.09) 0.133 (0.11) 

 

Initial KC 

Difficulty ("j) 
Mean (Std) -1.81 (0.94) 0.08 (1.10) 

Initial Student 

Difficulty (#i) 
Mean (Std) 2.03 (0.61) -0.00 (0.63) 

# of KCs 17 17 
 

# of transactions across entire 
scatterplot lesson 

16,291 16,291 
 

 

# of students 52 52 
 



 

 
 

Table III. Knowledge Component Details for the two Heuristics  

 

 

Generally, we observed that, the LH performed better than the TH when the student 

failed to successfully complete an attempted step and subsequently attempted and 

succeeded at a different step. As shown in table I, the student unsuccessfully attempted a 
step at location “var-0val-1” (trn # 1 & 2). The student subsequently went to location 

“var-1val-1”, attempted and succeeded at the new step. While the TH incorrectly blamed 

“label x-axis” which is the KC associated with the new step at location “var-1val-1”, the 

LH more rationally blamed  “choose variable” which is the KC that should be associated 

with the step at location “var-0val-1”. Because the LH uses location for error attribution, 

it correctly assigns blame to the KC associated with the error. TH however, wrongfully 

blames the first subsequent KC that the student correctly attempts. Of the 16,291 

 Simple Temporal Heuristic 

(TH) 

Simple Location Heuristic 

(LH) 

Knowledge 
Component (KC) 

Ave 
Opp 

"j  

(Initial 
difficulty) 

!j 
(learning 
rate) 

Ave 
Opp 

"j 

(Initial 
difficulty) 

!j 
(learning 
rate) 

CHOOSE-VAR-TYPE-
CAT 6.6 -1.449 0.076 6.6 0.048 0.244 

MMS-VALUING-
DETERMINE-SET-
MAX 6.9 -0.793 0 6.2 1.275 0 

MMS-VALUING-
DETERMINE-SET-
MIN 6.3 -0.361 0.031 6.2 1.587 0.063 

QUANTITATIVE-

VALUING-FIRST-BIN 6.1 -2.642 0.159 5.5 -0.565 0.163 

QUANTITATIVE-
VALUING-SECOND-
BIN 5.6 -0.947 0 5.4 0.879 0.052 

MMS-VALUING-
LABELSUSED 6.9 -2.625 0.049 5.8 -0.942 0.219 

CHOOSE-VAR-TYPE-
NUM 18.2 -1.044 0.038 16.2 0.799 0.044 

MMS-VALUING-
DETERMINE-SCALE 53.1 -0.069 0.007 50.2 2.364 0 

MMS-VALUING-
LABELSUSED-PLUS2 5.9 -1.99 0.063 5.8 -0.805 0.187 

TEST-SLOPE 3.3 -2.213 0.131 3.3 0.238 0 

CHOOSE-OVERALL-
REL 5.0 -3.175 0.257 5.2 -0.865 0.149 

EXTRAPOLATE 1.7 -2.093 0 1.5 0.206 0 

CHOOSE-OK-BG 11.5 -1.708 0.198 11.4 0.263 0.215 

CHOOSE-X-AXIS-

QUANTITATIVE 4.3 -2.572 0.274 3.2 -0.719 0.314 

CHOOSE-Y-AXIS-
QUANTITATIVE 3.7 -2.618 0.018 3.2 -1.884 0.276 

MMS-VALUING-
DETERMINE-MIN 6.3 -3.053 0.119 5.8 -1.106 0.139 

MMS-VALUING-

DETERMINE-RANGE 6.3 -1.357 0.147 6.1 0.584 0.196 



  
 

transactions in our dataset, error transactions recorded were 5,733. Of the latter, the LH 

and TH differed on 1,583 (36%) transactions with respect to error attribution choices. 
We also found that both the LH and the TH had the tendency to yield the same result 

when the student succeeded at a step, even after multiple attempts, prior to attempting 

and succeeding at a new step. This was the case 64% of the time. 

In table III, average practice opportunity, initial KC difficulties and learning rates are 

given for KCs and used to describe learning behavior for each heuristic. For example, for 

the KC “CHOOSE-VAR-TYPE-CAT”, the learning rate (!j) for the LH was more than 3 

times that of the TH. Judging by KC initial difficulty ("j), “CHOOSE-VAR-TYPE-CAT” 

appeared more difficult for the model of the TH (-1.449) than for the model of the LH 

(0.244). The average practice opportunity measured for that skill (6.6), was the same for 

each heuristic. The latter means that on the average, each student had approximately 7 

opportunities to practice the KC “CHOOSE-VAR-TYPE-CAT”.  

From table III, for the most part, KC learning rate was higher for the skills in the 
cognitive model of the LH compared to that for the TH. The trend for initial KC 

difficulty was in the opposite direction as seen for KCs such as “MMS-VALUING-

DETERMINE-SET-MIN”, “QUANTITATIVE-VALUING-SECOND-BIN”, etc. 

Generally, KCs in the cognitive model for TH appeared more difficult to students 

initially, when compared to similar KCs in the cognitive model of the LH. 

From table II, the mean learning rate for the LH was 0.133(+0.11) which evaluated 

higher than that of the TH, 0.09(+0.09). The mean initial KC difficulty for the LH and 

TH were 0.08(+1.1) and -1.84(+0.94) respectively. The reason for the latter seems to be 

due to more errors being attributed to later opportunities in the TH than the LH. These 

results thus illustrate the effects of error attribution. 

7. CONCLUSION 
In this paper, we investigated the generality of performance of two alternative methods 

for making error attribution in intelligent tutoring systems - the simple location heuristic 

and the simple temporal heuristic. Our study was carried out in the mathematics domain 

using data from a cognitive tutor unit on scatterplot generation and interpretation. In 

support of previous results obtained in the physics domain, we found that the simple 

location heuristic was better at predicting students’ changes in error rate over time 

compared to the simple temporal heuristic. This work shows that simpler, easier-to-

implement methods can be effective in the process of making error attribution.  

One observation is that for tutors where the KCs can be determined by the interface 

location (or widget) in which an action appears it is likely that the LH will show better 

results than the TH.   This feature is mostly true of the scatterplot tutor. It is possible that  

the TH is better in situations where the different problem subgoals can be associated with 
a single location.  However, our prior results with a physics data set indicated that even in 

such situations the LH may be better.  Further research should explore this issue. 

We also intend to investigate whether the use of the simple location-based heuristic 

may improve on-line student modeling and associated future task selection. The 

availability of datasets from the Pittsburgh Science of Learning Center’s ‘DataShop’ (see 

http://learnlab.org) will facilitate the process of getting appropriate data. 
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